

MH88615

June 1997

Standard SLIC with Ringing Preliminary Information Amplification

Features

• 2W to 4W conversion

- Battery Feed to line
- Off-Hook and dial pulse detection
- Power Denial
- Integral Ringing Amplifier
- Programmable Loop Current
- Wide Battery Voltage Operating Range
- Variants
- - 1 Germany/Spain/South Africa/Australia
- 2 600Ω
- - 3 UK
- 4 900Ω
- - 7 North America

Applications

Line Interface for:

- PABX
- Pair Gain Systems
- Satellite Communication Systems
- Key Telephone Systems
- Terminal Adapters
- Cordless Local Loop

Ordering Information									
MH88615-1/-3/-7	20 Pin SIL Package								
MH88615AV-2	20 Pin SIL Package								
MH88615AT-1/-3/-7	20 Pin 90° Package								
MH88615AT-2	20 Pin 90° Package								
MH88615AS-4	40 Pin SM Package								
0°C to 7	'0°C								

ISSUE 6

Description

The Mitel MH88615 SLIC provides an interface between a switching system and a subscriber loop. The functions provided by the MH88615 include battery feed, ringing amplification, 2W to 4W conversion, current feed, off-hook detection and dial pulse detection. The device is fabricated as a thick film hybrid.

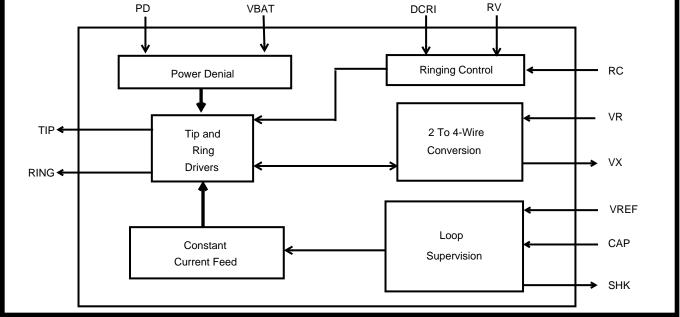
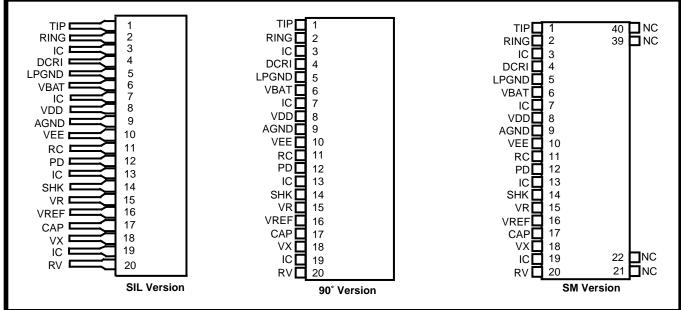



Figure 1 - Block Diagram

Pin Description

Pin#	Name	Description
1	TIP	Tip Lead. Connects to the "Tip" or "A" lead of subscriber line.
2	RING	Ring Lead. Connects to the "Ring" or "B" lead of subscriber line.
3	IC	Internal Connection. This pin is internally connected and must be left open circuit.
4	DCRI	DC Ringing Voltage Input. A continuous DC voltage is applied to this pin. This voltage is the positive supply rail for the internal ringing amplifier.
5	LPGND	Battery Ground. V _{BAT} return path for subscriber line. Connects to the system energy dumping ground. LPGND and AGND must be connected together within the system.
6	VBAT	Battery Voltage. Battery supply feed for subscriber line. Typically -48V DC is applied to this pin.
7	IC	Internal Connection. This pin is internally connected and must be left open circuit.
8	VDD	Positive Supply Voltage. +5V DC supply rail. VDD must not be applied before VEE is applied.
9	AGND	Analogue Ground. V_{DD} and V_{EE} return path. AGND and LPGND must be connected together within the system.
10	VEE	Negative Supply Voltage. -5V DC supply rail. VDD must not be applied before VEE is applied.
11	RC	Ringing Control. A logic 1 enables a balanced ringing voltage to be applied to the subscriber line when the correct Ringing Voltage input is applied.
12	PD	Power Denial. A logic 1 will isolate the battery voltage from Tip and Ring.
13	IC	Internal Connection. This pin is internally connected and must be left open circuit.
14	SHK	Switch Hook Detect. A logic 1 indicates when the subscriber line has gone off-hook.
15	VR	Receive Signal (input). This is the analogue signal to the subscriber's set.
16	VREF	Reference Voltage. A DC reference voltage is applied to this pin to set the constant current feed to subscriber line. This pin may also be grounded for normal 25mA loop current when $V_{BAT} = -48V$.

Pin Description

Pin#	Name	Description
17	CAP	Ring Trip Filter Capacitor . A capacitor should be connected from this pin to ground whilst ringing is applied. This filters out low frequency ringing signals preventing false off-hook conditions.
18	VX	Transmit Signal (output). This is the analogue signal from the subscriber's set.
19	IC	Internal Connection. This pin is internally connected and must be left open circuit.
20	RV	Ringing Voltage. A low level AC sinusoid is applied as the ringing signal at this pin. This signal is amplified and applied to the subscriber line. A source with less than 10Ω output impedance should be used to supply this signal.
21, 22, 39, 40	NC	No Connection. These pins are provided for mechanical mounting only on the surface mount versions.
23 - 38		Not Fitted. No pins are fitted in these positions.

Functional Description

The Mitel MH88615 standard SLIC provides an interface between a switching system and a subscriber loop. The functions provided by the MH88615 include battery feed, integral ringing amplifier, 2W to 4W conversion, constant current feed, off-hook detection and dial pulse detection. The device is fabricated as a thick film hybrid in a 20 pin package format for SIL and 90° versions while surface mountable packages are 40 pin versions.

The MH88615 is intended for applications where low cost and a basic functionality are important. The MH88615 features an integral ringing amplifier which enables a system designer to provide ringing without having to generate a high voltage, high current AC signal.

The SLIC implements a 2-4 wire converter which is usually connected to a CODEC. This provides an interface from the 2 wire subscriber loop to a TDM (time division multiplex), PCM (pulse code modulation) digital link.

Powering of the subscriber line is provided through precision battery feed resistors on the circuit. The thick film hybrid circuit also contains control, signalling and status circuits which combine to provide a comprehensive line interface solution. A power denial facility is provided which isolates the battery feed from the Tip and Ring leads. This can remove a line from service which will reduce power consumption.

An Application Note MSAN-151 is available to provide technical assistance to the customer in their use of the MH88615 product. The customer can

obtain a copy of the Applications Note from their local Mitel Sales Office, Distributor or Representative.

DC Current Limit

Under normal Ring ground or Tip ground conditions the current is limited to 45mA. Both leads should not be simultaneously grounded.

Ringing and Ring Trip Detection

The MH88615 incorporates an integral ringing amplifier. When a logic 1 is applied to the Ringing Control (RC) pin a balanced ringing signal equal to 60x the AC sine wave applied to the RV pin is placed on the unloaded Tip and Ring leads. See Recommended Operating Conditions for details of the AC ringing generator voltages.

The internal off-hook detection circuit monitors changing DC levels on Tip and Ring and indicates an off-hook condition by taking SHK pin to logic 1. Whilst ringing is being applied there is a large AC component present on the line which must be filtered at the input to the detection circuit for it to operate properly. The Application Circuit (Figure 3) shows how this is achieved. Since C1 will remove dial pulse signals from the line it must be isolated during pulse dialing and resistor R1 is switched in using a sense drive output (SD3) on a Mitel MT896x CODEC. Applications which solely use DTMF signalling can have C1 permanently connected to ground. More details, including an entirely hardware solution for Ringing Voltage Filtering, are available in MSAN-151.

MH88615

When a subscriber set goes off-hook during ringing (RC is logic 1) the SHK pin will go to a logic 1 within 200ms. Ringing is not automatically removed from the line. Systems should be designed such that the RC pin of the hybrid is taken to logic 0 within 200ms of SHK going to logic 1. The system must also ensure that the RC pin will not go to logic 1 again within 400ms of SHK going to logic 1. These two functions can be realized using a software or a hardware solution. A suitable circuit to perform both of these functions is given in MSAN-151.

Power Denial

A logic 1 applied to the power denial input removes the battery voltage from the loop driver circuitry. The resulting loop current is negligible and power consumption is minimized. The power denial function is useful for disabling a loop which may have a fault. Note that the SHK is invalid during power denial.

Constant Current Feed

The loop current is programmed by the DC reference voltage applied to $V_{\text{REF.}}$ The loop current is given by the formula:

 $Iloop = -(0.52V_{BAT} + 4.24V_{REF})mA$

Switch Hook Detection

When the DC current exceeds an internal threshold level which represents a loop current level of typically 10mA, the switch hook output (SHK) will switch to a logic 1. If the loop resistance is so high that V_{BAT} can no longer supply the required loop current, the output SHK will switch to logic 0.

Transmit Gain

Transmit gain (Tip-Ring to VX) is fixed at 0dB. For correct gain, the SLIC input impedance must match the line impedance.

Receive Gain

Receive Gain (VR to Tip-Ring) is fixed at 0dB. For correct gain, the SLIC input impedance must match the line impedance.

Input and Network Balance Impedances

Variants are available to meet different country line impedances, they are as follows:

MH88615-1 Germany, Spain, South MH88615T-1 Africa, Australia $Zin = 220\Omega + (820\Omega / / 115nF)$ Znet = $220\Omega + (820\Omega)/(115nF)$ MH88615AV-2 - 600Ω MH88615AS-2 $Zin = 600\Omega$ Znet = 600Ω UK MH88615-3 MH88615T-3 $Zin = 300\Omega + (1000\Omega / / 220nF)$ Znet = $370\Omega + (620\Omega)/(310nF)$ MH88615AS-4 $Zin = 900\Omega$ Znet =900Ω MH88615-7 North America MH88615T-7 $Zin = 600\Omega$ Znet = $350\Omega + (1k\Omega/210nF)$

	-	-				
	Characteristics	Sym.	Min.	Max.	Units	Comments
9	Supply Voltages	V _{BAT}	0.3	-65	V	With respect to LPGND
		V _{DD}	-0.3	6	V	
		V _{EE}	0.3	-6	V	
		V _{DCRI}	-0.3	150	V	With respect to LPGND
10	Storage Temperature	Τ _S	-55	125	°C	

Absolute Maximum Ratings * - Voltages are with respect to AGND

Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

Recommended Operating Conditions

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Test Comments	Test Circuit
1	Supply Voltages	V _{BAT} V _{DD} V _{EE} V _{DCRI}	-20 4.75 -4.75 0	-48 5.0 -5.0 90	-60 5.25 -5.25 100	V V V V	V _{DD} must not be applied before V _{EE} is applied.	
2	Operating Temperature	T _{OP}	0	25	70	°C	300Hz - 3.4kHz	Figure 7
3	AC Ring Amplifier Gain Voltage Frequency	V _R F _R	56.4 17	60 60	63.6 90 68	V/V V _{rms} Hz	V _{BAT} = -48V V _{DCRI} = 100V Sine wave input Open circuit output	Figure 4 SW1= 3

* Typical figures are at 25°C with ± 5V supplies and are for design aid only

DC Electrical Characteristics

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Test Comments	Test Circuit
1	Supply Current	I _{DD} I _{EE} I _{BAT} I _{DCRI}		10 4 1	12 5 2.5 1	mA mA mA mA	PD on RC off	Figure 4 Figure 4 Figure 4
2	Power Consumption	PC			150 1700	mW mW	Standby Active	
3	Constant Current Line Feed	I _{LOOP}	23	25	27	mA	V _{REF} = AGND V _{BAT} =-48V	Figure 4 SW1= 2
4	Adjustable Loop Current Range	I _{LOOP}	18		30	mA	See 'Constant Current Feed' on page 5	Figure 4 SW1= 2
5	Maximum Operating Loop Resistance	R _{LOOP}	1800			Ω	V_{BAT} =-48V @ I _{LOOP} =18mA R _{LOOP} includes telephone set	
6	Ground Over- Current				45	mA	Connecting Tip and Ring to Ground at the same time may cause damage	Figure 4 SW1= 1 Ring lead OR Tip lead grounded
7	Off-Hook Detect Output Low Voltage Output High Voltage	V _{OL} V _{OH}	2.7		0.4	V V	Active High Logic	

DC Electrical Characteristics (continued)

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Test Comments	Test Circuit
8	Off-Hook Detect Output Low Current Output High Current	I _{OL} I _{OH}			4 -400	mA μA		
9	RC, PD Control Input Input Low Voltage Input High Voltage	V _{IL} V _{IH}	2.0		0.7	V V	Active High Logic	
10	RC, PD Control Input Input Low Current Input High Current	I _{IL} I _{IH}			-500 500	μΑ μΑ		

* Typical figures are at 25°C with ± 5 supplies and -48V battery voltage. They are for design aid only. Note: Operating I_{BAT} and I_{DCRI} are dependent on application. Transient values can be up to 250mA during off-hook or Ringing Cadence conditions.

AC Electrical Characteristics*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Test Comments	Test Circuit
1	Ringing Voltage	V _R F _R	17	60	90 68	Vrms Hz	V _{BAT} = -48V V _{DCRI} =+100V	
2	Ring Trip Detect Time				200	ms	$C1 = 1\mu F$ in ring trip filter circuit (see Figure 6)	Figure 4 SW1 switched from 3
3	Input Impedance at VR		90	100	110	kΩ		
4	Output Impedance at VX			10		Ω		
5	Voltage Gain 2-wire to \overline{VX}		-0.25	0	0.25	dB		Figure 5
6	Frequency Response 2-wire to VX		-0.25	0	0.25	dB	Relative to 1kHz 300Hz to 3.4 kHz	Figure 5
7	Voltage Gain VR to 2- wire		-0.25	0	0.25	dB		Figure 6 Z= Zin
8	Frequency Response VR to 2-wire		-0.25	0	0.25	dB	Relative to 1kHz 300Hz to 3.4 kHz	Figure 6 Z= Zin
9	Total Harmonic Distortion at Tip-Ring and VX	THD		0.2 5	1	% %	@ 0dBm @ +3dBm	Figure 5 & Figure 6 Z= Zin
10	Common Mode Rejection Ratio	CMR R	48	55		dB	@1kHz	Figure 9-
11	Power Supply Rejection Ratio at 2- Wire or VX	PSRR	25	40		dB	Ripple 0.1V 1kHz @ VDD	Figure 6 Z= Zin

* Typical figures are at 25°C and are for design aid only.
Notes: All of the above test conditions use a test source impedance which matches the device's impedance (Zin - see page 5).
THD is measured with "A Weight" filter.

2-148

AC Electrical Characteristics* - MH88615-1, MH88615T-1

	Characteristics	Sym.	Min.	Тур.	Max	Units	Test Comments	Test Circuit
1	Ringer Equivalence	REN	5				1 REN = 8000Ω @25Hz	
2	Return Loss	RL	20	33		dB	300Hz-3.4kHz	Figure 7
3	Transhybrid Loss	THL	24	32		dB	300Hz -3.4kHz	Figure 6 Z=Znet
4	Longitudinal to Metallic Balance		32 54	58		dB dB	50Hz - 300Hz 300Hz - 4kHz	Figure 8
5	VX Idle Channel Noise	Nc		11	17	dBrnc	lloop = 25mA	Figure 6 Z=Zin
	Tip/Ring Idle Channel Noise	Nc		11	15	dBrnc		

Notes: Return Loss reference impedances are defined by variant type. Transhybrid Loss is measured when terminated with network impedance (Zin - see page 5).

AC Electrical Characteristics* - MH88615-3, MH88615T-3

	Characteristics	Sym.	Min.	Тур.	Max	Units	Test Comments	Test Circuit
1	Ringer Equivalence	REN	4				1 REN = 7000Ω @25Hz	
2	Return Loss	RL	20	33		dB	300Hz -3.4kHz	Figure 7
3	Transhybrid Loss	THL	20	32		dB	300Hz -3.4kHz	Figure 6 Z=Znet
4	Longitudinal to Metallic Balance		50 52	53 57		dB dB	300Hz 1kHz to 3.4kHz	Figure 8
5	VX Idle Channel Noise Tip/Ring Idle	Nc Nc		11 11	17 15	dBrnc dBrnc	lloop = 25mA	Figure 6 Z=Zin
	Channel Noise							

Notes: Return Loss reference impedances are defined by variant type.

Transhybrid Loss is measured when terminated with network impedance (Zin - see page 5).

AC Electrical Characteristics* - MH88615-7, MH88615T-7, MH88615AV-2/AT-2

	Characteristics	Sym.	Min.	Тур.	Max	Units	Test Comments	Test Circuit
1	Ringer Equivalence	REN	5				1 REN = 7000Ω @20Hz	
2	Return Loss	RL	24	37		dB	300Hz -3.4kHz	Figure 7
3	Transhybrid Loss	THL	20	30		dB	300Hz -3.4kHz	Figure 6 Z=Znet
4	Longitudinal to Metallic Balance		52	58		dB	300Hz - 3.4kHz	Figure 8
5	VX Idle Channel Noise	Nc		11	17	dBrnc	lloop = 25mA	Figure 6 Z=Zin
	Tip/Ring Idle Channel Noise	Nc		11	15	dBrnc		

Notes: Return Loss reference impedances are defined by variant type.

Transhybrid Loss is measured when terminated with network impedance (Zin - see page 5).

AC Electrical Characteristics* - MH88615AS-4

	Characteristics	Sym.	Min.	Тур.	Max	Units	Test Comments	Test Circuit
1	Ringer Equivalence	REN	5				1 REN = 7000Ω @20Hz	
2	Return Loss	RL	24	37		dB	300Hz -3.4kHz	Figure 7
3	Transhybrid Loss	THL	20	30		dB	300Hz -3.4kHz	Figure 6 Z=Znet
4	Longitudinal to Metallic Balance		52	58		dB	300Hz - 3.4kHz	Figure 8
5	VX Idle Channel Noise	Nc		11	17	dBrnc	lloop = 25mA	Figure 6 Z=Zin
	Tip/Ring Idle Channel Noise	Nc		11	15	dBrnc		

Notes: Return Loss reference impedances are defined by variant type. Transhybrid Loss is measured when terminated with network impedance (Zin - see page 5).

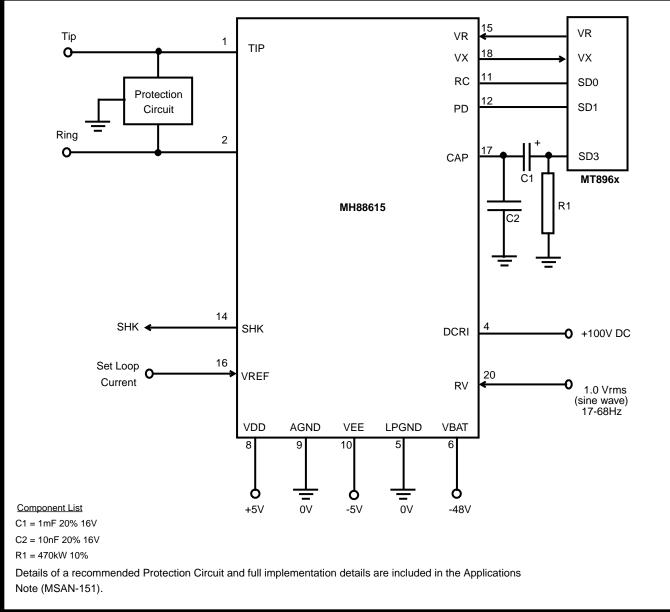


Figure 3 - Typical Application Circuit

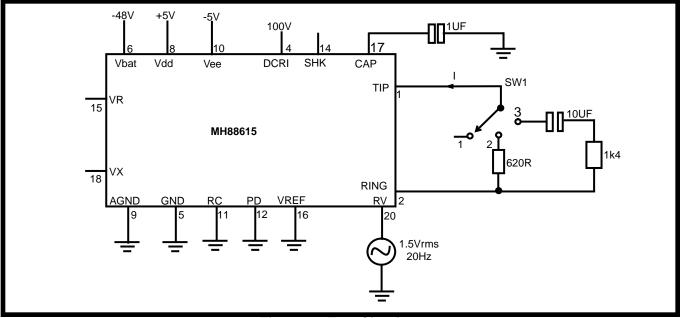


Figure 4 - Test Circuit 1

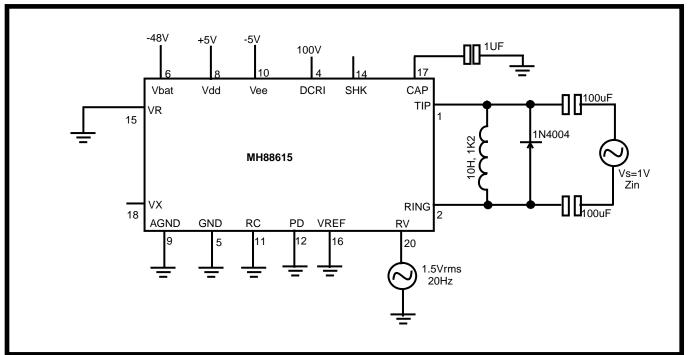


Figure 5 - Test Circuit 2

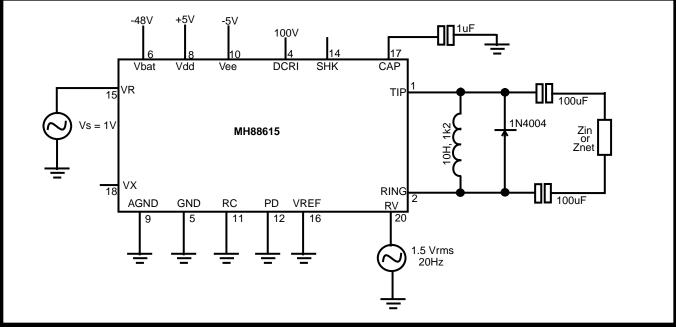


Figure 6 - Test Circuit 3

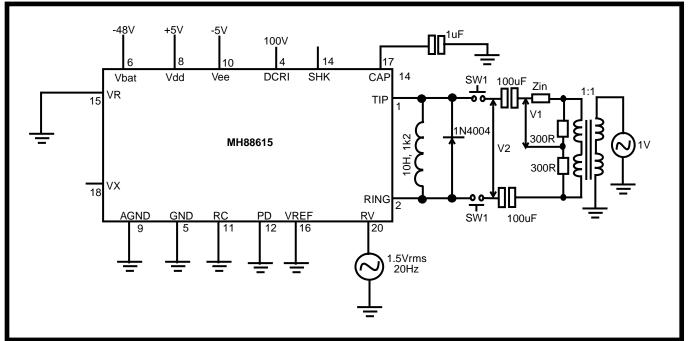


Figure 7 - Test Circuit 4

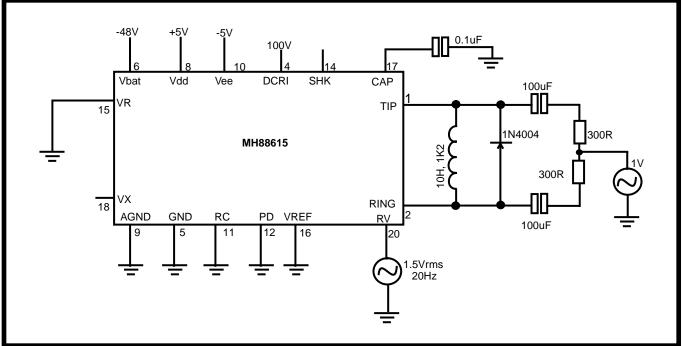


Figure 8 - Test Circuit 5

0.12 Max 0.165 Max (3.05 Max) (4.2 Max) 2.10 Max (53.4 Max) 0.8 Max (20.32 Max) 3 4 19 20 1 2 0.010 + 0.005 (0.25 + 0.13)0.050 + 0.020 0.180 + 0.020 (1.27 + 0.51)Notes. (4.60 + 0.51)1) Not to scale. 2) Dimensions in inches. 3) (Dimensions in mm). 0.050 + 0.020* 0.020 + 0.005 0.100 + 0.010* Dimensions to pin center and (1.27 + 0.51)* (0.51 + 0.13) $(2.54 + 0.25)^*$ tolerance non-accumulative.

Figure 9 - Mechanical Data for MH88615-1/-3/-7, AV-2

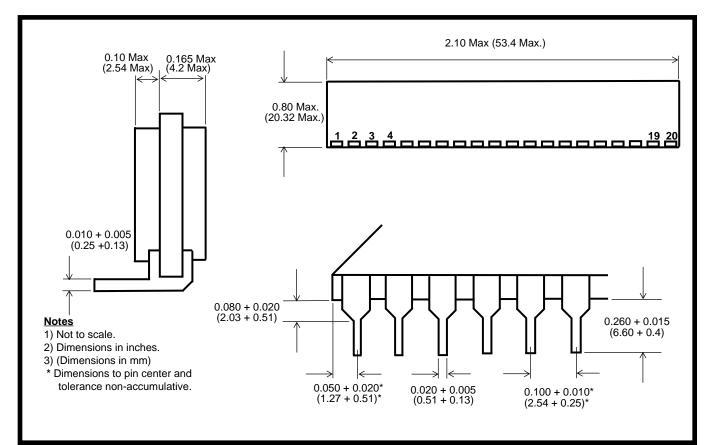
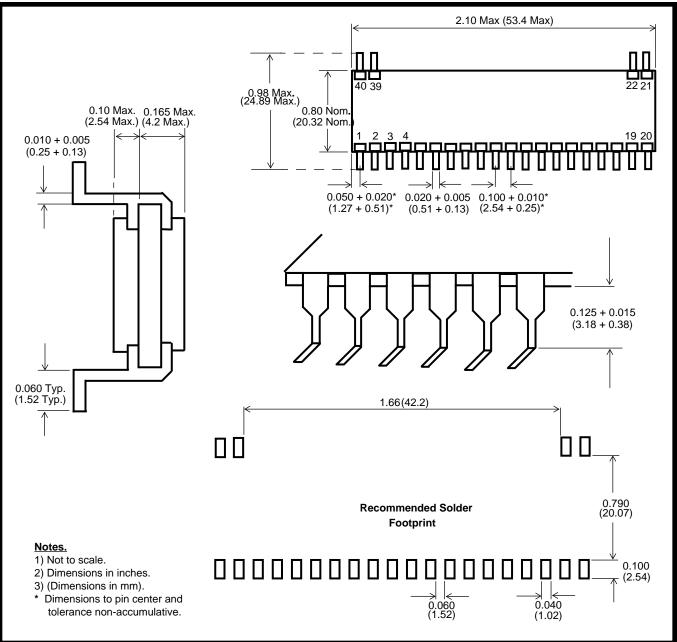



Figure 10 - Mechanical Data for MH88615T-1/-3/-7, AT-2

2-155

